Regular Grammars

Pre-requisite knowledge: deterministic finite automata, non-deterministic finite automata, regular
expressions, regular languages, and grammars.

A regular language may be expressed using a deterministic or non-deterministic finite automaton, a
regular expression, or a regular grammar. A regular grammar is one that is either right-linear or left-
linear.

Def. A grammar G = (V,T,S,P) is said to be right-linear if all productions are of the form:
A — XxB,
A—x
where A,BEV, xET*.

Def. A grammar is said to be left-linear if all productions are of the form:
A — Bx,

A—x

Def. A regular grammar is one that is either right-linear or left-linear.

Example: Simple Arithmetic Expression

We start by generating the grammar for a simple arithmetic expression where we may use an addition
or a subtraction operator (+ or -). The operands may be single digits using 1, 2, or 3. Example
arithmetic expressions include 1 + 2 and 2 - 3. Invalid strings include1+2+3,4+5,8—-1,and 0 +6.

To develop a regular grammar, we first start with one that might be used to represent a simple
arithmetic expression:

S—>A+A|A-A
A—1]2]3.

Try it! Start JFLAP and select File/Open to load the file SimpleArithmeticExpression_CFG.jflap. It should
open with this window:

r Rl
| 4| JFLAP v8.0(SimpleArithmeticExpression_CFG jflap) =™
File Edit Input Test Convert Help

I Grammar Editor

T\

s | | RHS []
S —A+A B
S —A-A
A -l E
A —2 L
(A —3 <]

| rGrammar = (V, T, P, S)

V={A S }

T={+|-]1]2|3 }

S=S

Table Text Size

[L.

| =

To try an input string of 1 + 2, choose Input > Brute Force Parse and type 1 + 2 into the Input textbox,
press the Enter key and press Complete. You should see Input Accepted! You may ignore the brute
parse table for now. Check the grammar type using Test > Test for Grammar Type. JFLAP should report
this as a context-free grammar.

Try It! Next, try to input a string which is not part of the language suchas 1 -4 and 5 + 8. What does
JFLAP return? How do you know whether or not the input string is part of the language generated by
the grammar?

Questions to think about
1. Doesthe grammar accept 1+ 2 + 3? Why or why not?
Answer: No, the grammar does not accept 1 + 2 + 3.
2. Isthe grammar a regular grammar?

Answer: To find out, we need to be able to say that the grammar is either right- or left-linear. So
we ask ourselves, is it right-linear? No. The first rule (S — A + A) does not satisfy the definition
of a right-linear grammar since the right hand side of the rule contains a terminal in between
two non-terminals. Is it left-linear? It is not for similar reasons above.

Next, we re-work the grammar into a right-linear grammar for the same language expressed. To
eliminate the terminal in between two non-terminals, we need to use a new non-terminal to represent

the “+ A” or “- A” portion of the string. We represent this with a new non-terminal, B. The right-linear
grammar could be:

S— 1B | 2B | 3B
B—+C|-C
c—1]2]3.

Try It! Enter this grammar containing 8 production rules into JFLAP. Run some valid and invalid input
strings. Check its grammar type. Note that all right-linear grammars are also context-free grammars.

Try It! Convert the grammar into a left-linear grammar. Enter the production rules into JFLAP. Run
some test strings. Check its grammar type.

Questions to think about
1. How many strings can be generated by this language?
Answer: 3 x 2 x 3 = 18. There are 18 different strings accepted by the grammar.

2. What is the relationship between context-free grammar and regular grammars? For example,
are all context-free grammars right- or left-linear?

Answer: A context-free grammar is not always right- or left-linear as shown with the first
grammar in this module but all right-linear and left-linear grammars are context-free.

3. How would the right-linear grammar be extended to include multiple digits in each operand?
Example valid strings include 321123 + 2233 and 111 - 33.

Answer: Add the following rules to the grammar:B — 1B | 2B | 3Band C - 1C | 2C | 3C.

Reference:

Peter Linz, “An Introduction to Formal Languages and Automata” 5t edition, Jones and Bartlett, 2011.

